ИЗМЕНЕНИЯ В ПЕРЕЧЕНЬ

машин и оборудования, подлежащих закупке в 2021 году в рамках Соглашения между Правительством СССР и Правительством Японии о взаимных отношениях в области рыболовства у побережий обеих стран от 7 декабря 1984 г. на основании Протокола 33 сессии Российско-Японской комиссии по рыболовству в качестве технической помощи подведомственным Росрыболовству организациям

№ п/п	Наименование технической помощи (машин, оборудования и других материальнотехнических средств)	Ед. изм.	Кол- во	ОКПД 2	Описание объекта закупки	Обоснование для получения машин и оборудования	Адрес поставки
8	Микрорентгено флуоресцентны й спектрометр BRUKER M4 TORNADO	Шт.	1	26.51.4 1.130	Микрорентгенофлуоресцентный спектрометр (Місго-ХКF) М4 ТОRNADO (Вгикег) - расширенная конфигурация М4, модель 230 - с двойной системой детектирования. Характеристики (метрологические и технические): 1. Микрорентгенофлуоресцентный спектрометр 1.1. Большая камера образцов не менее 600 х 350 х 260 мм³ 1.2. Большой столик образцов для анализа большого количества проб или больших проб, размеры столика не менее 330 х 170 мм² 1.3. Моторизованная дверка камеры образцов для быстрого манипулирования с образцами. 1.3.1. Блокировка движения дверки камеры образов при касании.	Оборудование необходимо Департаменту анадромных рыб России для проведения плановых работ, направленных на исследование онтогенеза анадромных видов рыб. Прибор будет применятся для оценки элементного состава регистрирующих возраст структур в целях выявления соотношения пресноводного, эстуарного, прибрежного и морского периодов жизни, необходимых для получения объективных данных о становлении численности тихоокеанских лососей и гольцов Salvelinus на разных акваториях.	ФГБНУ «ВНИРО» , 105187, г. Москва, Окружно й проезд, д. 19

	1.4.Программируемый, моторизованный,	Прибор позволяет выполнять
	высокоскоростной Х-Ү-Z-столик для	высокочувствительный точечный
	позиционирования образца скорость	неразрушающий объект анализ в
	перемещения не менее 200 мм/с	
		широком диапазоне элементов в
	1.5. Наблюдение образца	точке, по площади, картирование,
	1.5.1. Не менее двух видео-микроскопов с	распределения элементов.
	переменным увеличением и мозаичной	
	функцией позволяющей наблюдать образцы	
	сверху в разных увеличениях.	
	1.5.2. Увеличение видеомикроскопов не хуже	
	10 крат и 100 крат.	
	1.5.3. Дополнительный видео-микроскоп с	
	видом от стенки камеры образцов функция	
	«рыбий глаз».	
	1.6. Диафрагменный вакуумный насос –	
	безмаслянный, для избежания загрязнения	
	образца.	
	1.7. Готовность для работы после включения	
	насоса не боле 100с.	
	1.8. Контроллер вакуума - наличие.	
	1.9.Оптимизация излучения возбуждения с	
	помощью первичных фильтров – не менее 5	
	фильтров.	
	1.10. Обязательна возможность	
	дополнительной установки второй трубки для	
	возбуждения выбранных групп элементов и	
	для возбуждения с коллиматором.	
	(дополнительная опция, заказывается	
	отдельно)	
	1.11.Высоковольтный генератор мощностью не	
	более 30 Вт	
	1.12. Год выпуска не ранее 2019	
	1.13. Габаритные размеры спектрометра не	
	более: 820 х 690 х 590 мм (Ш х Г х В), вес	
	прибора не более 140 кг.	
	1.14. Исполнение прибора – настольный.	
LL	 1	<u>l</u>

2. ИЗМЕРИТЕЛЬНАЯ ЧАСТЬ И
РЕГИСТРИРУЮЩАЯ СИСТЕМА
2.1. Детектирование двойной системой,
включает в себя два детектора, с параллельной
схемой обработки сигнала.
2.1.1. Детектор кремниевый-дрейфовый (SDD)
(две единицы):
2.1.2. Энергетическое разрешение не хуже 145
эВ для линии Мп-Ка при скорости не менее 10
000 имп./с.
2.1.3. Активная площадь детектора не более 30
MM ²
2.1.4. Температура детектора не ниже -30С0
2.1.5. Охлаждение – безазотное, на эффекте
Пельтье.
2.2. Обязательна возможность установки
дополнительного кремне-дрейфового
детектора с параметрами - энергетическое
разрешение не хуже 145 эВ для линии Мп-Ка,
активная площадь не более 30 мм ²
(дополнительная опция заказывается отдельно)
2.3. Защита от несанкционированного касания
детектора и рентгеновской оптики с
автоматическим отключением перемещения
столика.
2.5. Визуальный контроль образца и столика –
с помощью программного обеспечения – как
вручную, так и автоматически.
2.5.1. Изменение яркости подсветки столика с
образцом
2.5.2. Изменение яркости подсветки камеры
образца
2.5.3. Перемещения по столику/образцу –
центрирование на указанной точке.
2.5.4. Перемещения по столику/образцу —
перемещение за стрелкой-курсором на экране

	по заданному направлению и с изменяемой
	скорость.
	2.5.5. Автоматическая и ручная фокусировка
	по оси Z.
	2.6. Энергетический спектр не менее 4096
	каналов
	3. ИСТОЧНИК РЕНТГЕНОВСКОГО
	ИЗЛУЧЕНИЯ
	3.1.Возбуждение с высокой яркостью, низкой
	мощностью, рентгеновской трубкой с
	воздушным охлаждением (Rh-анод)
	бериллиевое окно.
	3.1.1. Напряжение не более 50кВ
	3.1.2. Ток не более 600мкА.
	3.2.Рентгеновская оптика: коллиматор
	3.2.2. Размер пятна фокусировки 20-25 мкм.
	3.2.3. Опция flexy spot – контролируемый
	изменяемый диаметр пятна фокусровке на
	образце от 25 до 200мкм.
	3.3. Не менее 5 первичных фильтров
	рентгеновского излучения
	4.КОНТРОЛЬ ОБОРУДОВАНИЯ И ПО ДЛЯ
	АНАЛИЗА СПЕКТРОВ
	ПО для контроля прибора и обработки
	спектров имеет гибкий графический
	интерфейс, который удовлетворяет
	требованиям пользователей любого уровня.
	Следующие функции включены в стандартный
	пакет:
	4.1. Контроль прибора: условия возбуждения
	(параметры трубки, фильтры), время
	измерения, контроль столика и камеры,
	защитные функции
	4.2. Накопление и отображение спектров
	4.3. Манипулирование спектрами и их
	обработка
	ООРАООТКА

	4.4.Анализ объектов	
	4.4.1. Анализ распределения концентрации	
	элементов по линии. Расчет концентрации в	
	каждой точке сканирования.	
	4.4.2 Анализ по точкам – одна точка,	
	несколько точек, сетка. Функция	
	автофокусирования в каждой точке.	
	Автоматический последовательный анализ в	
	точках с автоматическим расчетом	
	концентраций в каждой точке. Варианты	
	расчета – во время накопления спектра, после	
	накопления спектра.	
	4.4.3. Анализ по точкам с задание координат.	
	Привязка к координатам. Задание трех точке	
	для привязки к выбранному объекту на	
	образце. Задание последовательности задач и	
	автоматическое их выполнение. В каждой	
	точке возможно выполнение измерения по	
	точке, по линии, по прямоугольнику.	
	4.4.3. Анализ по площади с накоплением	
	спектров в каждой точке. Накопление и	
	сохранение результатов в виде базы данных.	
	Работа off-line с полученной базой данных.	
	Цветокодированное картирование по	
	элементам, картирование по одному,	
	нескольким элементам. Получение суммарного	
	спектра из выбранной области базы данных по	
	визуальному изображении (области для	
	задания – точка, эллипс, прямоугольник,	
	линия).	
	4.5. Ручной и автоматический количественный	
	анализ	
	4.6. Автоматическое определение площади	
	пика посредством подгонки или процедуры	
	деконволюции	
	деконволюции	

4.7.Количественный анализ безэталонным методом для объемных материалов с помощью пакета: 4.7.1. Возможность редактирования методов и	
пакета: 4.7.1. Возможность редактирования методов и	
4.7.1. Возможность редактирования методов и	
создание собственных методов. 4.7.2.	
Возможность как автоматического, так и	
интерактивного измерения.	
4.7.3. Возможность указания	
стехиометрической формулы и	
количественный анализ с выдачей конечных	
результатов в виде оксидов и других	
химических соединений.	
4.8.Система характеризации слоев с	
дополнительным пакетом.	
4.9.Создание и подготовка отчетов и	
архивирование результатов. Экспортирование	
отчетов в программы пакета «MS Office».	
4.10. Комплект программ для удаленной	
методической и сервисной поддержки по	
электронной почте и интернет.	
4.11. Комплект программ для автоматического	
поиска фаз.	
4.12. Комплект программ для автоматического	
поиска схожих спектров по созданной	
оператором базе данных.	
4.13. Комплект программ для поиска	
локальных максимумов — «максимальный	
пиксельный спектр»	
5.ПК и дополнительные периферийные	
устройства	
Для контроля прибора минимальные	
требования к ПК	
5.1. Управляющий ПК, не хуже, чем: рабочая	
станция Dell T5810 XCTO Basis	
5.2. Частота не менее: Процессор: 3,7 Гц Хеоп	
E5-1630	

					Виѕ/RAМ: 1 GHz 5.3. Память не менее: RAM 8 GB Harddisk: 1000 GB 5.4. Интерфейс не хуже: USB (4х)Ethernet 5.5. ОС не хуже: Windows 7, 64 бит. 5.6. Monitor не менее:24" 5.7. Клавиатура, мышь. 5.8. Видеокарта 1Gb nVidia 6.Требования к документации Прибор внесен Гос. реестр средств измерений и имеет следующую документацию: 6.1. Сертификат (свидетельство) об утверждении типа средства измерения (выдан Федеральным агентством по техническому урегулированию). 6.2. Руководство пользователя на русском языке 6.3. Экспертное заключение о соответствии		
					6.3. Экспертное заключение о соответствии нормам радиационной безопасности и санитарным правилам обеспечения		
					радиационной безопасности		
9	Жидкостной	ШТ.	1	26.51.5	Автоматическая специализированная система	Современный аминокислотный	ФГБНУ
	хроматограф			3.190	для анализа аминокислот и родственных	анализатор необходим для	«ВНИРО»
	Agilent 1260				соединений, с после- (пост-) колоночной	выполнения прикладных научных	, 105187,
	Infinity II с УФ-				дериватизацией нингидрином и	исследований в рамках	г. Москва,
	Вид				автосамплером. Анализатор состоит из шести	государственного.	Окружно
	детектором				блоков (что более удобно для обслуживания,	Анализатор необходим при	й проезд,
					сервиса, доукомплектации):	разработке отечественных	д. 19
					1. Термостатируемый автосамплер для	комбикормов для объектов аква- и	
					автоматического ввода проб; автосамплер	марикультуры, так как	
					вмещает в себя не менее 105 виал объёмом 1.5	аминокислотный состав белка	
					мл, с возможностью расширения поддонами для виал различного объема. Образцы	является ключевым нормируемым параметром. Для выполнения	
					термостатируются при 4°С при помощи	государственного задания ежегодно	
					элементов Пельтье. Программируемые объемы	требуется проведение более 3000	
					вводимой пробы: от 0,1 до 100 мкл с шагом 0,1	анализов аминокислотного состава	

					мкл, а также последовательность ввода проб и последовательность промывки дозирующего устройства.	белка. В настоящее время в ФГБНУ «ВНИРО» аминокислотный анализатор отсутствует, а исследования проводятся в очень ограниченном объёме (не более 40 образцов в год) согласно договору оказания услуг. Оснащение отдела кормов и кормовых компонентов аминокислотным анализатором позволит вести исследования на высоком научном уровне; создать базу данных по аминокислотному составу компонентов и готовых комбикормов; оказывать услуги по определению аминокислотного состава белков заинтересованным лицам в рамках договоров о приносящей доход деятельности; в целом будет способствовать развитию отечественного кормопроизводства для объектов	
10	Жидкостной хроматограф Agilent 1260 Infinity II с диодноматричным детектором	ШТ.	1	26.51.5 3.190	Разделение аминокислот осуществляется на колонке методом ионообменной хроматографии, далее в автоматизированном реакционном модуле APM-1000H/APM-1000HT, установленном на выходе из колонки, происходит дериватизация аминокислот. Модуль для проведения постколоночной дериватизации имеет два исполнения: с интегрированным термостатом колонок APM-1000HT и без него (APM-1000H). Твердотельный термостат реализует быстрые температурные градиенты благодаря использованию элементов Пельтье. Вмещает	аквакультуры. В настоящее время в ФГБНУ «ВНИРО» аминокислотный анализатор отсутствует. Он необходим для выполнения научных исследований в области обеспечения повышения эффективности использования водных биоресурсов. Аминокислотный состав белков ВБР является од-ним из важнейших показателей пищевой ценности объекта изучения. На сегодняшний день данные исследования	ФГБНУ «ВНИРО» , 105187, г. Москва, Окружно й проезд, д. 19

колонку размером до 290×16 мм. Диапазон температур от t окружающей среды -5 до +990С. Высокотемпературный реактор (от t окружающей среды до + 200°C) с возможностью использования реакционного капилляра длиной до 20 метров (петля 16 м×0,3 мм из ПТФЭ в стандартной комплектации). Легкая замена и обслуживание реактора в случае засорения. Дозирующий насос для подачи реагента и промывочного раствора. Все части, контактирующие с растворами, выполнены из ПЭЭК и ПТФЭ. Последовательная схема с двумя микроплунжерами исключает нестабильность и пульсации потока. Дозирование осуществляется в диапазоне 0,001-5 мл/мин (возможна установка головки насоса с диапазоном потоков дозирования 0,01-10 мл/мин). Предусмотрена постановка метода. В комплект входят: -насос высокого давления до 600 бар градиентный, с промывкой плунжеров автоматической, смесителем, дегазатором -системный контроллер, -термостат колонок с системой нагрева/охлаждения от «комнатная минус 10» °С до 85°С, - диодно-матричный детектор с проточной ячейкой диапазон длин волн 190-640 нм, - автосамплер, - программное обеспечение, - капилляр.

проводятся только в Научноисследовательском институте физико-химической биологии имени А.Н. Белозерского (МГУ им. М.В. Ломоносова) в очень ограниченном объёме (не более 40 образцов в год) согласно договору оказания услуг. Оснащение департамента технического регулирования аминокислотным анализатором позволит самостоятельно вести научные исследования в области биохимии объектов ВБР на высоком научном уровне, а также оказывать услуги по определению аминокислотного состава белков другим научным организациям и заинтересованным лицам в рамках договоров приносящих доход. В связи с этим наличие данного прибора позволит сократить расходы бюджетных средств на проведение исследований в сторонней организации. Раздел 1 «Проведение прикладных исследований», Тема 11 «Разработка научно обоснованных технических требований к производству безопасной продукции»

- набор для обслуживания насосов высокого

-комплект для обслуживания автосамплера,

А также расходные материалы:

давления,

					- комплект виал (100 шт.), - колонка аналитическая,		
					- набор для приготовления подвижной фазы.		
					φωσεί		
					Оборудование правительства РФ или		
					приобретаемое в РФ:		
					-персональный компьютер с монитором и		
					принтером,		
					-источник бесперебойного питания.		
					-блок постколоночной деривации АРМ-		
4.4				06.71.7	1000H/APM-1000HT	-	* *******
11	Лабораторная	ШТ.	1	26.51.5	Лабораторная микроволновая система для	Данная система предназначена для	ФГБНУ
	микроволновая			3.140	кислотного разложения (минерализации) проб	микроволновой пробоподготовки	«ВНИРО»
	система CEM MARS 6 iWave				с целью последующего элементного анализа	образцов и дальнейшего их анализа	, 105187, г. Москва,
	WIAKS 6 IWave				(методами атомно-абсорбционной спектрометрии AAS и атомно-эмисионной	на ГЖХ GC-2010PLUS (в комплекте).	Окружно
					спектрометрии ААЗ и атомно-эмисионной спектрометрии с индуктивно связанной	Набор входящих аксессуаров в	й проезд,
					плазмой ICP-OES).	комплекте позволяет проводить	и просзд, д. 19
					Преимущества микроволнового кислотного	кислотное разложение,	д. 17
					разложения (минерализации):	выщелачивание, сжигание в токе	
					- многократное сокращение времени	кислорода, экстракцию, сушку и	
					разложения (кислотной минерализации). При	разложение исследуемых проб под	
					микроволновом кислотном разложении	воздействием УФ-излучения в	
					(минерализации) происходит быстрое, полное,	одной системе.	
					воспроизводимое и безопасное кислотное	Данная система позволит проводить	
					разложение органических и неорганических	пробоподготовку образцов на	
					образцов в 100 раз быстрее, чем при	современном уровне и позволит	
					использовании традиционного метода.	значительно повысить точность	
					- отсутствуют потери летучих элементов и	результатов элементного анализа.	
					перекрестное загрязнение проб.	Раздел 1 «Проведение прикладных	
					- значительная экономия объемов	исследований», Тема 11	
					дорогостоящих кислот, упрощение состава	«Разработка научно обоснованных	
					реакционной смеси.	технических требований к	
					- безопасность работы оператора (нет утечки	производству безопасной	
					паров кислот, угрожающих здоровью	продукции»	
					оператора).		

1.0	X 7		1	26.51.5	M	р жеепи	&EEIIV
12	Универсальная	ШТ.		26.51.5	Машины испытательные EZ-L предназначены	В настоящее время в ФГБНУ	ФГБНУ
	настольная			3.140	для совместных измерений силы и изменений	«ВНИРО» анализатор текстуры от-	«ВНИРО»
	испытательная				линейных размеров образцов металла,	сутствует. В научных	, 105187,
	машина				пластмассы, резины, дерева при исследовании	исследованиях по разработке	г. Москва,
	Shimadzu EZ-				свойств этих материалов на сжатия,	инновационных технологий пере-	Окружно
	Test LX				растяжения и изгиб.	работки ВБР необходимы данные	й проезд,
					Машины содержат два измерительных канала	по структурно-механическим	д. 19
					 канал измерений силы и канал измерений 	свойствам исследуемых образцов,	
					перемещения. Скорость перемещения поршня	которые позволяют научно	
					задают с панели электронного блока	обосновать режимы и процессы	
					управления. При проведении измерений	рационального использования	
					испытываемый образец закрепляют в	изучаемых объектов. На данном	
					различных приспособлениях (зажимах), одно	приборе можно изучить широкий	
					из которых (подвижное) закреплено на	спектр реологических показателей	
					подвижной траверсе через датчик	сырья и продуктов переработки.	
					силоизмерителя, а другое жестко связано с	Изучение структурно-механических	
					машиной. При перемещении траверсы	свойств объекта исследования	
					подвижное приспособление воздействует на	позволяет оптимизировать способ	
					образец, вызывая его деформацию вплоть до	получения продуктов с заданными	
					разрушения. Тип деформации зависит от	характеристиками, а также дать	
					используемых приспособлений.	рекомендации по применению этих	
					Электронный блок управления и обработки	продуктов. Оснащение	
					данных управляет всеми операциями.	департамента позволит	
					Скорость, измеренные значения силы и	самостоятельно вести научные	
					перемещения отображаются на дисплее.	исследования (отказаться от	
					В комплект оборудования входят насадки: для	договоров со сторонними	
					измерения проникновения (насадки	организациями), тем самым	
					конические, шарообразные и полусфера), для	сократить расходы бюджетных	
					измерения прямой и обратной экструзии,	средств на проведение	
					растекаемости, компрессионные пластины,	исследований, а также оказывать	
					=	· ·	
					резка (струна), клинья для определения	услуги по определению	
					хрупкости (излом и изгиб), натяжения,	реологических показателей	
					сыпучесть порошков, адгезия, сжатия, сдвиг,	образцов для других научных орга-	
					набор цилиндрических зондов для	низаций и заинтересованным	
					определения консистенции.	лицам.	
						Раздел 1 «Проведение прикладных	

		исследований», Тема 11 «Разработка научно обоснованных технических требований к	
		производству безопасной	
		продукции»	